
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4416 69

Analysis of Agriculture Commodity Prices using

MapReduce Model

Roopam Dad
1
, Nikhil Shanmugam

2
, Prapti Singh

3
, S.M Nalawade

4

BE, Computer, Sinhgad Institute of Technology, Lonavala, India1,2,3

Professor, Computer Department, Sinhgad Institute of Technology, Lonavala, India 4

Abstract: India is the fastest growing economy in the world. Agriculture is the backbone of country. Agriculture

continues to be main stay of life for majority of the Indian population. It contributes around 25% of the GDP and

employs 65% of the workforce in the country. Big Data can help agriculture sector to chance its phase and rise with the

growing economy. It can provide economists and policy makers with insightsand help in makingdecisions and crucial

policies. In this paper we are proposing a system which accumulates various commodity data from open government

data sources, filter it by MapReduce steps as table functions and producing current and yearly trends that canhelps

farmers selling their crops at best profitable prices and provides detailed analysis for various commodities and markets.

Keywords: Data Collection, Analysis, Agriculture, MapReduce.

I. INTRODUCTION
This paper proposes a system which inputs different

commodity data sets from open government data sources

and analyze it produce monthly, yearly trends, location

based current and previous prices and production,

comparison graph of commodities in different

Markets/Cities/Market/States, price and production

rise/fall graphs over time.

The proposed system has three major components:

1. Data collection Agents

2. Analyzer(MapReduce)

3. User Interface(Cross Platform Application)
Technology used : Java, Bootstrap framework,

Hadoop MapReduce.

II. DESIGN of SYSTEM

In this section we describe the general architecture of the

proposed system. This section helps you understand how

various components are interrelated to each other and how

data is collected and processed to give desired output.

Formal modeling is a process of writing and analyzing

formal description of models and systems that represent

real world process. It is technique to model complex

phenomenon as mathematical entities so that rigorous
analysis techniques can be applied on the models to

understand the reality of complex phenomenon. System S

is divided into three sub systems :

S={s1,s2,s3}

Where S1-> Data collection system

 S2-> Data filtering and analytics system

 S3-> Presenting data in rich format.

A. DATA COLLECTION SYSTEM :

Data from different sources is input to the data collection
system.

Let different sources be T1,T2,….Tk.

For each Ti :

Ti={(k1,v1),(k2,v2)…..(kn,vn)}

Where (ki,vi) are key-value pairs.

Data from various sources can be collected with the help

of web scrapping tool Mozenda, building specialized

downloader using java which extracts data from websites

and from creating surveys using open data source kit to

target smart phone users.

Before understanding what data collection Agent does you

need to know what are different data sets and from where
they are collected.

1. DATA SETS :

Let us understand Data sets with set theory. Let C be a

commodity data set.

C={C1,C2,C3......Cn}, where Ci = commodity i.

Now, every commodity Ci can have specific values over

time.

Ci={N,D, Q,M,P1,P2,P3,V}, where

N : name of Commodity, D : date of arrival in market, Q :

quantity, M : name of Market,

P1 : minimum price, P2 : maximum price, P3 : modal
price and V : variety.

Proposed system collects this data sets from year 2005-

2015.

2. SAMPLE DATA SETS :
N D Q(quintals) M P1 P2 P3 V

onion 4/2/2013 42.2 pune 25 30 27 -

rice 5/2/2013 35.3 lonavala 50 70 60 -

potato 5/2/2013 13.5 kohlapur 20 25 22 -

corriander 6/3/2013 55.6 kohlapur 30 40 35 -

tomato 7/3/2013 56.9 mumbai 30 40 35 -

onion 8/3/2013 22.5 pune 20 30 25 -

onion 8/3/2013 20.6 nashik 26 28 27 -

cauliflower 8/3/2013 12.7 nagpur 50 80 65 -

lemon 9/4/2013 5.8 nagpur 15 25 20 -

oranges 12/4/2013 20.8 nagpur 100 140 120 -

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4416 70

3. AGENT :

Agent is a Java program specifically developed to collect

data from open government data websites and

www.argmarknet.nic.in. Bulk of commodity data has been

collected for year 2005-2015. It also has feature which

collects data on daily basis.

Figure 1: System Architecture

III. DATABASE AND STORAGE

Data collected from data collection agent is directly stored

in master database. As collected data is mainly structured

data, we are using Oracle RDBMS for storage of data. The

Oracle RDBMS has support for the MapReduce paradigm

for years through user defined pipelined table functions
and aggregation objects.

Oracle provides connectors to allow external Hadoop

programs to access data from traditional databases and to

store Hadoop output on databases. Aster Data provides

MapReduce extensions to SQL called SQL-MapReduce

for writing MapReduce programs within the database.

IV. MAP REDUCE PROGRAMMING MODEL

Many NoSQL systems including MapReduce adopt the

Key/Value pair as the data Model. A MapReduce
computation takes a set of input Key/Value pairs and

produce a set of output Key/Value pairs. One round of

computation is generally divided into three phases : Map,

Shuffle and Reduce.

Map : <k1,v1> --> {<k2,v2>,..........}. The map phase

executes the user defined Mapper method to parse input

pairs and produce a set of intermediate pairs.

Shuffle : {<k2,v2>,.........} --> {<k2,{v2,......v2}>,........}.

The shuffle phase defined by the MapReduce library,

groups all intermediate values associated with the same
intermediate key together, so they are ready to be passed

to the reduce phase.

Reduce : <k2,{v2,.....v2}> --> {<k3,v3>.......}. The reduce

phase executes the user defined reducer Method to process

the intermediate values associated with each distinct

intermediate key.

V. MAP REDUCE STEPS AS TABLE

FUNCTIONS

The shuffle phase of MapReduce is performed by the PQ

(parallel query) Engine while both Map and Reduce

phases are implemented by pipelined table functions.

Pipelined table functions were introduced in Oracle 9i as a
way of embedding procedural logic within a dataflow.

Table functions take a stream of rows as an input and

return a stream of rows as output. They can appear in

FROM clause and act like a normal cursor. In the example

below, Table_Func is a user defined table function.

INSERT INTO OutTable

SELECT * FROM TABLE

(Price_Display_Reduce (:ConfKey ,

CURSOR (SELECT * FROM TABLE

(Price_Display_Map (:ConfKey,
 CURSOR (SELECT * FROM InTable))))))

The output from Price_Display_Map is partitioned by key

and streamed to Price_Display_Reduce whose output is

inserted into OutTable. Each table function performs one

of the MapReduce phases.

In this way user writes a SQL queries that integrate the

Map and Reduce functionalities in an intuitive way. All

the computation details are hidden from users and handled

by the Oracle parallel Query Engine. In addition, this

approach greatly generalizes the MapReduce Model due to
flexibility of SQL.

VI. DATA STORAGE ARCHITECTURE

Figure 2 : Structure of the unique key.

A. INTERMEDIATE KEY:

There are two lists #Commodity and #Market. Commodity

list contains all the commodity names with each having a

unique id. Same case is with the market list that stores all

market names. Commodity and Market lists generates a

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4416 71

combine Intermediate key . Intermediate key is in CCC-

MMM format. Here CCC and MMM denotes unique

commodity and Market id respectively.

Suppose user want to see potato price in Mumbai then a

unique intermediate key will be generated as “001-002”
where “001” is the id of potato in commodity list and

”002” is the id of Mumbai in Market list. See Fig 2.

Mapping is done between Commodity and Market list on

user demand. This technique generates a unique id for

every unique query.

A. UNIQUE ID :

Every data set is stored with a unique id in the database. If

simplification is applied in data storage and its structure

then it becomes easy to retrieve data no matter how

complex the query is.

“YYYY-MM-DD-CCC-MMM” (date- commodityID -

marketID) is the format of the unique id. Data type of

Unique ID is string. A specific commodity with a specific

market on a specific date with particular values such as its

price, variety, quantity, quality will be stored with a

unique id.

Let us understand by an example that how it is efficient to

store and find data with the proposed unique key. Suppose

we want to see price and quantity of commodity potato in

Mumbai on 20/02/2015.

With this information first, an intermediate key will get

generated as “001-002”, now by adding date to it a unique

key as “2015-02-20-001-002” is generated. This key

directs cursor for where to look for the required data in the

database. Figure 2 shows sample database key/value pairs.

Figure 3:Different attributes of unique key and sample

values at it.

VII. DATA FETCHING

With the assumed format of the unique key querying and

fetching data gets simpler and time complexity gets

reduced. Let us see it with some sample queries which

system uses. Assume that there are 100 Markets and 100

commodities starting from 001 and ending at 100.

1. Single Market Multiple Commodities

Market name : Pune Code : 001

Commodity 1 Code : 001

Commodity 100 Code : 100

Date : 2015/02/20

So, first unique id value will be “2015-02-20-001-001”

and last unique id value will be “2015-02-20-100-001”. In

above two unique ids, values except in bold are constants.

So a pseudo query structure can be Select from table

where key is like 2015-02-20-CCC-001 where CCC is

between 001 and 100. This query selects required

commodity data for the market.

Commodity
Min

Price

Max

Price
Quantity

Onion 20 30 43.2

Rice 60 80 100.5

…. …. …. ….

…. …. …. ….

Cotton 120 160 ….

Table 1: Various commodities in Single market.

The above Table 1 shows all the commodities available in

the chosen market.

2. Multiple Market Single Commodity

In Single Market Multiple commodity, commodity id is

the variable id. In Multiple Market Single commodity

market id is variable id. This query compares different

attributes like price, production, quantity, demand, supply,

of common commodities in different market.

Select from table where key is like 2015-02-20-097-

MMM where CCC is between 001 and 100.

Figure 4 shows price of potato in different markets across

India. Similarly different attributes can be seen for various

commodities in different markets.

1. Multiple Market Multiple Commodity

In Multiple Market Multiple Commodity both market id

and commodity id will depend on the request from user

and data is fetched according to the changes in those two

sub keys. Date is kept constant. Query written below
selects multiple commodities from multiple markets.

Figure 4: Price of commodity Potato in different markets.

0

10

20

30

Potato

Potato

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4416 72

Select from table where key is like 2015-02-20-CCC-

MMM where CCC is between 001 and 100 and MMM is

between 025 and 050.

Figure 5: Prices of various commodities in different

markets.

2. Single Market Single Commodity over time

(Month/Year/Week)

Assume, start date : 2013/12/01 and end date: 2015/02/20.

Market name : Pune Code : 001 commodity name : Rice

code : 003.

For yearly,

First unique id will be “2013-12-01-003-001” and last

unique id will be “2015-12-31-003-001”. Resultant pseudo

query will be :

 Select from table where key is like YYYY-MM-DD-003-

001 where YYYY is between 2013 and 2015.

Figure 6: Change in price of onion overtime.

3. Multiple Market Single Commodity over time

(Month/Year/Week)

Commodity name : Rice Code : 003

For Single month,

Let month be may,2014.

First unique id will be 2014-05-01-003-NNN and last

unique id will be 2014-05-30-003-NNN. Resultant pseudo

query will be :

Select from table Where key is like 2014-05-DD-003-
NNN where DD is between 01 and 31 and NNN is

between 020 and 040.

For couple of months,

Start Month : May 2014

End Month : December 2014

markets.

Select from table where key is like 2014-MM-DD-003-

NNN where MM is between 05 and 12, DD is between 01

and 31 and NNN is between 020 and 040.

1. Multiple Market Multiple Commodity over time
(Month/Year/Week)

Time period is fixed by user. User can set period as week

month or year and then can look records for any month

year which is in the system.

For a year,

Let year be 2014.

Select from table where key is like 2014-MM-DD-CCC-

MMM where CCC is between 001 and 005 and MMM is

020,028,050.

Figure 7: Change in price of onion overtime in different

VIII. USER INTERFACE

A cross platform application is developed using HTML5,
CSS3 and JavaScript. Application is built upon Bootstrap

framework using Intel XDK. This application helps user to

see on demand current commodity prices in his/her

locality, monthly and yearly trends of selected commodity,

daily market prices, comparing prices of commodities

between different cities/markets/states over time and help

policy makers in making new and crucial policies and

predicting market flow.

User interaction with application works as input Key/value

pairs for MapReduce jobs. On the basis of received input

values server executes on demand MapReduce Jobs.
Output from MapReduce Jobs comes in Tabular Manner.

This output is then converted into different line and bar

graphs with the help canvas.js and Google chart APIs.

0

20

40

60

Potato

Onion

Rice

0

10

20

30

40 Onion

Onion
(Pune)

0

5

10

15

20

25

30

35

40

Ja
n

Fe
b

M
ar

A
p

r

M
ay

Ju
n

e

Ju
ly

A
u

g

Se
p

O
ct

N
o

v

D
ec

Pune

Delhi

Mumbai

2 per. Mov. Avg. (Pune)

2 per. Mov. Avg. (Delhi)

2 per. Mov. Avg. (Mumbai)

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 4, April 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4416 73

IX. CONCLUSION

The main goal for the system is to provide its users with

accurate and in time commodity prices, helping farmers in

selling their crops at right prices by providing them with

current market trends and rates in their locality, giving him

knowledge about best farming practices by providing him
with useful agriculture information regarding climate,

growing crops and land fertility.on various factors like

demand and supply, prices over time, change in

production rate and climate data is used to analyze

production and price of various commodities and

predicting future prices.

REFERENCES
[1]. Lingling Xu, “The Analysis of the Vegetables’ Price Fluctuation

with Cobweb Model” IJCRB December 2012

[2]. Franco Rosa, Michela Vasciaveo, “Agri-Commodity Price

Dynamics: The Relationship Between Oil and Agricultural

Market,”International Association of Agricultural

Economists(IAAE) Triennial Conference, Foz do Iguaçu, Brazil,

18-24 August, 2012.

[3]. Raghava Rao Mukkamala, Abid Hussain and Ravi Vatrapu,

“Towards a Set Theoretical Approach to Big DataAnalytics” Big

Data (Big Data congress), IEEE 2014.

[4]. Anokwa, Y. et al. “Open Source Data Collection in the Developing

World.” Computer 42.10 (2009): 97-99. ©2009 Institute of

Electrical and Electronics Engineers

[5]. ”Vegetable Sub Sector Study to Understand the Supply Chain

Coordination in Darrang, Barpeta and Kamrup District of Assam”

A collaborative inhouse Study of CENTRE FOR

MICROFINANCE & LIVELIHOOD November 2010

[6]. Virender Kumar, H.R. Sharma and Kamlesh Singh, “Behaviour of

Market Arrivals and Pricesof Selected Vegetable Crops: A Study of

FourMetropolitan Markets” Agricultural Economics Research

ReviewVol. 18 July-December 2005 pp 271-290.

[7]. Big Data Strategy — Issues Paper, © Commonwealth of Australia

2013.

[8]. Patel, A.B, Birla, M and Nair, U “Addressing Big Data problems

using Hadoop and Map Reduce” Engineering (NUiCONE), 2012

Nirma University International Conference.

[9]. “Harnessing Hadoop: Understanding the Big Data Processing

Options for Optimizing Analytical Workloads”© Copyright 2013,

Cognizant.

[10]. G.M.Nasira and N.Hemageetha, “Forecasting Model for Vegetable

Price Using Back Propagation Neural Network “International

Journal of Computational Intelligence and Informatics, Vol. 2: No.

2, July - September 2012.

[11]. Chris Eaton, Dirk Dieroos, Tom Deutsch and George Lapis,

“Understandin Big Data”. ISBN : 978-0-07-179053-6 MHID : 0-

07-179053-5.

[12]. “Professional NoSQL”, Copyright © 2011 by John Wiley & Sons,

Inc., Indianapolis, Indiana. ISBN : 978-0-470-94224-6.

[13]. “Big Data for Dummies”Copyright © 2013 by John Wiley & Sons,

Inc ISBN: 978-81-265-4328-1.

